login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337388
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
3
1, 3, 34, 587, 12870, 337877, 10262004, 352436961, 13465074758, 565280386625, 25826066397756, 1274138666796217, 67446164001827356, 3810171540686207283, 228658931521878071080, 14520123059677034441895, 972281769469377542763078, 68443768336740463562683177
OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Aug 31 2020: (Start)
a(n) ~ (2 + sqrt(n))^(2*n + 1/2) / sqrt(8*Pi*n).
a(n) ~ exp(4*sqrt(n) - 4) * n^(n - 1/4) / sqrt(8*Pi) * (1 + 19/(3*sqrt(n)) + 199/(18*n)). (End)
MATHEMATICA
a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Aug 25 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Main diagonal of A337389.
Cf. A337387.
Sequence in context: A105713 A376137 A367840 * A317653 A143638 A262673
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved