login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375930
Numbers k such that A005117(k+1) - A005117(k) > 1. In other words, the k-th squarefree number is more than 1 less than the next.
2
3, 6, 8, 11, 12, 13, 16, 17, 20, 23, 26, 29, 31, 32, 33, 34, 37, 39, 42, 45, 47, 50, 52, 55, 56, 57, 60, 61, 64, 67, 70, 73, 75, 77, 78, 81, 83, 86, 89, 91, 92, 93, 95, 98, 99, 100, 103, 104, 106, 109, 112, 115, 117, 120, 121, 122, 125, 127, 130, 133, 136, 139
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2-1)) = 1 - A065469 = 0.46928817... . - Amiram Eldar, Sep 15 2024
LINKS
EXAMPLE
The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by more than one after positions 3, 6, 8, 11, ...
MATHEMATICA
Join@@Position[Differences[Select[Range[100], SquareFreeQ[#]&]], _?(#>1&)]
PROG
(PARI) lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && !is2, print1(c, ", ")); is1 = is2); } \\ Amiram Eldar, Sep 15 2024
CROSSREFS
For nonprime numbers: A014689, complement A375926, differences A373403.
For composite numbers: A065890 shifted, complement A375929.
Positions of terms > 1 in A076259.
First differences are A120992, complement A373127.
The complement is A375927.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
Sequence in context: A350159 A308221 A350546 * A277732 A026604 A013642
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 12 2024
STATUS
approved