login
A375932
The largest unitary k-free divisor of n where k = A051903(n) is the maximum exponent in the prime factorization of n.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 11, 5, 1, 1, 3, 1, 2, 1, 13, 1, 2, 1, 7, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 9, 1, 1, 3, 19, 1, 1, 1, 5, 1, 1, 1, 21, 1
OFFSET
1,12
COMMENTS
The product of the prime powers in the prime factorization of n that have an exponent that is smaller than the maximum exponent in this factorization.
LINKS
FORMULA
If n = Product_{i} p_i^e_i (where p_i are distinct primes) then a(n) = Product_{i} p_i^(e_i * [e_i < max_{j} e_j]), where [] is the Iverson bracket.
a(n) = n / A375931(n).
a(n) = 1 if and only if n is a power of a squarefree number (A072774).
A051903(a(n)) = A375933(n).
a(n!) = A049606(n) for n != 3.
EXAMPLE
60 = 2^2 * 3 * 5, and the maximum exponent in the prime factorization of 60 is 2, which is the exponent of its prime factor 2. Therefore a(60) = 3 * 5 = 15.
MATHEMATICA
a[n_] := Module[{f = FactorInteger[n], p, e, i, m}, p = f[[;; , 1]]; e = f[[;; , 2]]; m = Max[e]; i = Position[e, m] // Flatten; n / (Times @@ p[[i]])^m]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], m); if(n == 1, 1, m = vecmax(e); prod(i = 1, #p, if(e[i] < m, p[i]^e[i], 1))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 03 2024
STATUS
approved