login
A373403
Length of the n-th maximal antirun of composite numbers differing by more than one.
57
3, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1
OFFSET
1,1
COMMENTS
This antirun ranges from A005381 (with 4 prepended) to A068780, with sum A373404.
An antirun of a sequence (in this case A002808) is an interval of positions such that consecutive terms differ by more than one.
FORMULA
a(2n) = 1.
a(2n - 1) = A196274(n) for n > 1.
EXAMPLE
Row-lengths of:
4 6 8
9
10 12 14
15
16 18 20
21
22 24
25
26
27
28 30 32
33
34
35
36 38
39
40 42 44
MATHEMATICA
Length/@Split[Select[Range[100], CompositeQ], #1+1!=#2&]//Most
CROSSREFS
Functional neighbors: A005381, A027833 (partial sums A029707), A068780, A176246 (rest of A046933, firsts A073051), A373127, A373404, A373409.
A000040 lists the primes, differences A001223.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
Sequence in context: A374146 A277109 A359262 * A063062 A066056 A153284
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2024
STATUS
approved