login
A153284
a(n) = n + Sum_{j=1..n-1} (-1)^j * a(j) for n >= 2, a(1) = 1.
6
1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1
OFFSET
1,3
COMMENTS
Row sums of triangle A153860. - Gary W. Adamson, Jan 03 2009
1 followed by interleaving of A000012 and A010701. - Klaus Brockhaus, Jan 04 2009
FORMULA
a(n)=1 if n is 1 or even; a(n)=3 if n is odd other than 1.
G.f.: x*(1 + x + 2*x^2)/((1+x)*(1-x)). - Klaus Brockhaus, Jan 04 2009 and Oct 15 2009
EXAMPLE
a(1)=1, a(2)=2-a(1)=2-1=1, a(3)=3+a(2)-a(1)=3+1-1=3, a(4)=4-a(3)+a(2)-a(1)=4-3+1-1=1, a(5)=5+1-3+1-1=3, a(6)=6-3+1-3+1-1=1, a(7)=7+1-3+1-3+1-1, etc.
PROG
(Magma) S:=[ 1 ]; for n in [2..105] do Append(~S, n + &+[ (-1)^j*S[j]: j in [1..n-1] ]); end for; S; // Klaus Brockhaus, Jan 04 2009
CROSSREFS
Equals A010684 with the addition of the leading term of 1
The first sequence of a family that includes A153285 and A153286
Cf. A153860.
Cf. A000012 (all 1's sequence), A010701 (all 3's sequence). - Klaus Brockhaus, Jan 04 2009
Sequence in context: A373403 A063062 A066056 * A112030 A010684 A176040
KEYWORD
easy,nonn
AUTHOR
Walter Carlini, Dec 23 2008
STATUS
approved