login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153860
Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).
5
1, 0, 1, 1, 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
1,1
COMMENTS
As an infinite lower triangular matrix M; M * [1,2,3,...] = A063210: (1, 2, 6, 6, 10, 10, 14, 14, ...
M * [1, 3, 5, 7, ...] = A047471, {1,3} mod 8. Eigensequence of the triangle = A066983 starting (1, 1, 3, 3, 7, 9, 17, 25, ...).
Binomial transform of the triangle = A153861. Row sums = A153284: (1, 1, 3, 1, 3, 1, 3, 1, ...).
LINKS
FORMULA
Triangle by columns: leftmost column = (1, 0, 1, -1, 1, ...); columns > 1 = (1, 1, 0, 0, 0, ...).
EXAMPLE
First few rows of the triangle:
1;
0, 1;
1, 1, 1;
-1, 0, 1, 1;
1, 0, 0, 1, 1;
-1, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 1, 1;
-1, 0, 0, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 0, 0, 1, 1;
...
PROG
(Haskell)
a153860 n k = a153860_tabl !! (n-1) !! (k-1)
a153860_row n = a153860_tabl !! (n-1)
a153860_tabl = [1] : [0, 1] : iterate (\(x:xs) -> -x : 0 : xs) [1, 1, 1]
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Jan 03 2009
STATUS
approved