login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).
5

%I #8 Feb 08 2022 23:20:16

%S 1,0,1,1,1,1,-1,0,1,1,1,0,0,1,1,-1,0,0,0,1,1,1,0,0,0,0,1,1,-1,0,0,0,0,

%T 0,1,1,1,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1

%N Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).

%C As an infinite lower triangular matrix M; M * [1,2,3,...] = A063210: (1, 2, 6, 6, 10, 10, 14, 14, ...

%C M * [1, 3, 5, 7, ...] = A047471, {1,3} mod 8. Eigensequence of the triangle = A066983 starting (1, 1, 3, 3, 7, 9, 17, 25, ...).

%C Binomial transform of the triangle = A153861. Row sums = A153284: (1, 1, 3, 1, 3, 1, 3, 1, ...).

%H Reinhard Zumkeller, <a href="/A153860/b153860.txt">Rows n = 1..100 of triangle, flattened</a>

%F Triangle by columns: leftmost column = (1, 0, 1, -1, 1, ...); columns > 1 = (1, 1, 0, 0, 0, ...).

%e First few rows of the triangle:

%e 1;

%e 0, 1;

%e 1, 1, 1;

%e -1, 0, 1, 1;

%e 1, 0, 0, 1, 1;

%e -1, 0, 0, 0, 1, 1;

%e 1, 0, 0, 0, 0, 1, 1;

%e -1, 0, 0, 0, 0, 0, 1, 1;

%e 1, 0, 0, 0, 0, 0, 0, 1, 1;

%e ...

%o (Haskell)

%o a153860 n k = a153860_tabl !! (n-1) !! (k-1)

%o a153860_row n = a153860_tabl !! (n-1)

%o a153860_tabl = [1] : [0, 1] : iterate (\(x:xs) -> -x : 0 : xs) [1, 1, 1]

%o -- _Reinhard Zumkeller_, Dec 16 2013

%Y Cf. A153860, A153284, A063210, A047471.

%K tabl,sign

%O 1,1

%A _Gary W. Adamson_, Jan 03 2009