login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A073051
Least k such that Sum_{i=1..k} (prime(i) + prime(i+2) - 2*prime(i+1)) = 2n + 1.
23
1, 3, 8, 23, 33, 45, 29, 281, 98, 153, 188, 262, 366, 428, 589, 737, 216, 1182, 3301, 2190, 1878, 1830, 7969, 3076, 3426, 2224, 3792, 8027, 4611, 4521, 3643, 8687, 14861, 12541, 15782, 3384, 34201, 19025, 17005, 44772, 23282, 38589, 14356
OFFSET
1,2
COMMENTS
Also, least k such that 2n = A001223(k-1) = prime(k+1) - prime(k), where prime(k) = A001223(n). - Alexander Adamchuk, Jul 30 2006
Also the least number k>0 such that the k-th maximal run of composite numbers has length 2n-1. For example, the 8th such run (24,25,26,27,28) is the first of length 2(3)-1, so a(3) = 8. Also positions of first appearances in A176246 (A046933 without first term). - Gus Wiseman, Jun 12 2024
FORMULA
a(n) = A038664(n) - 1. - Filip Zaludek, Nov 19 2016
EXAMPLE
a(3) = 8 because 1+0+2-2+2-2+2+2 = 5 and (5+1)/2 = 3.
MATHEMATICA
NextPrim[n_Integer] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {50}]; s = 0; k = 1; p = 0; q = 2; r = 3; While[k < 10^6, p = q; q = r; r = NextPrim[q]; s = s + p + r - 2q; If[s < 101 && a[[(s + 1)/2]] == 0, a[[(s + 1)/2]] = k]; k++ ]; a
PROG
(PARI) a001223(n) = prime(n+1) - prime(n);
a(n) = {my(k = 1); while(2*n != A001223(k+1), k++); k; } \\ Michel Marcus, Nov 20 2016
CROSSREFS
Position of first appearance of 2n+1 in A176246.
For nonsquarefree runs we have a bisection of A373199.
A000040 lists the primes, first differences A001223.
A002808 lists the composite numbers, differences A073783, sums A053767.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
Sequence in context: A093537 A373400 A180621 * A183930 A183922 A340493
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 15 2002
STATUS
approved