

A093537


Number of ndigit Fibomorphic numbers, i.e., numbers m such that Fibonacci(m) ends in m.


1



3, 8, 22, 82, 228, 229, 231, 231, 230, 231, 232, 231, 230
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence of k such that Fibonacci(k) mod 10^n = k mod 10^n has for n=1..10 the periods: 14, 31, 71, 271, 771, 771, 771, 771, 771, 771. This may help explain why the A093537 terms are almost constant for n>=5. [Lars Blomberg, Oct 02 2011]


LINKS

Table of n, a(n) for n=1..13.


EXAMPLE

For n=1, there are 3 such 1digit Fibonacci numbers: 0, 1 and 5.


CROSSREFS

Cf. A000350.
Sequence in context: A148772 A148773 A148774 * A180621 A073051 A183930
Adjacent sequences: A093534 A093535 A093536 * A093538 A093539 A093540


KEYWORD

base,nonn,more


AUTHOR

Lekraj Beedassy, May 14 2004


EXTENSIONS

4 more terms from David Wasserman, Oct 26 2006
Offset changed to 1 and a(8)a(13) added by Lars Blomberg, Oct 02 2011


STATUS

approved



