

A073054


Number of applications of DENEAT operator needed to reduce n to 123.


2



5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

0 does not occur. 1 first occurs for n=101, 2 first occurs for n=2, 3 first occurs for n=20, 4 first occurs for n=11, 5 first occurs for n=1. What is the least n such that a(n) > 5?  Jason Earls, Jun 03 2005
Since each string has only finitely many preimages under this map, the sequence is unbounded. Compare A100961.  N. J. A. Sloane, Jun 18 2005


REFERENCES

M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
M. J. Halm, Blackholing, Mpossibilities 69, (1999), p. 2.


LINKS

Table of n, a(n) for n=0..98.


MATHEMATICA

f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ Length[ NestWhileList[f, n, UnsameQ, All]]  2, {n, 0, 104}] (* Robert G. Wilson v, Jun 09 2005 *)


CROSSREFS

Cf. A073053, A100961.
Sequence in context: A111129 A168464 A059688 * A072996 A244892 A278066
Adjacent sequences: A073051 A073052 A073053 * A073055 A073056 A073057


KEYWORD

easy,nonn


AUTHOR

Michael Joseph Halm, Aug 16 2002


EXTENSIONS

Edited and corrected by Jason Earls (zevi_35711(AT)yahoo.com) and Robert G. Wilson v, Jun 03 2005


STATUS

approved



