The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100961 For a decimal string s, let f(s) = decimal string ijk, where i = number of even digits in s, j = number of odd digits in s, k=i+j (see A171797). Start with s = decimal expansion of n; a(n) = number of applications of f needed to reach the string 123. 6
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Obviously if the digits of m and n have the same parity then a(m) = a(n). E.g. a(334) = a(110). In other words, a(n) = a(A065031(n)). It is easy to show that (i) the trajectory of every number under f eventually reaches 123 (if s has more than three digits then f(s) has fewer digits than s) and (ii) since each string ijk has only finitely many preimages, a(n) is unbounded. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 EXAMPLE n=0: s=0 -> f(s) = 101 -> f(f(s)) = 123, stop, a(0) = 2. n=1: s=1 => f(s) = 011 -> f(f(s)) = 123, stop, f(1) = 2. CROSSREFS A073054 gives another version. f(n) is (essentially) A171797 or A073053. Cf. A065031, A308002. Sequence in context: A098708 A067394 A076925 * A263206 A230501 A287272 Adjacent sequences:  A100958 A100959 A100960 * A100962 A100963 A100964 KEYWORD nonn,easy,base AUTHOR N. J. A. Sloane, Jun 17 2005 EXTENSIONS More terms from Zak Seidov, Jun 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 21:20 EST 2020. Contains 332028 sequences. (Running on oeis4.)