login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375613
Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], 1/4).
1
1, 1, 5, 2, 9, 41, 6, 26, 113, 493, 24, 102, 434, 1849, 7889, 120, 504, 2118, 8906, 37473, 157781, 720, 3000, 12504, 52134, 217442, 907241, 3786745, 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861, 40320, 166320, 686160, 2831160, 11683224, 48219366, 199040786, 821723673, 3392923553
OFFSET
0,3
FORMULA
T(n, k) = Sum_{j=0..k} 4^(k - j)*binomial(k, k - j)*(n - j)!.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 5;
[2] 2, 9, 41;
[3] 6, 26, 113, 493;
[4] 24, 102, 434, 1849, 7889;
[5] 120, 504, 2118, 8906, 37473, 157781;
[6] 720, 3000, 12504, 52134, 217442, 907241, 3786745;
[7] 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861;
...
MATHEMATICA
T[n_, k_] := Sum[4^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A375612, A000142, A056545 (main diagonal).
Sequence in context: A257513 A276849 A367210 * A127098 A127097 A040024
KEYWORD
nonn,tabl
AUTHOR
Detlef Meya, Aug 21 2024
STATUS
approved