login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375610
Expansion of e.g.f. 1 / (exp(-x) - x^3).
1
1, 1, 1, 7, 49, 241, 1681, 18481, 192193, 2028097, 26854561, 400419361, 6074016961, 100260498625, 1847840462833, 36061045391281, 738757221740161, 16244778936351361, 380460397886975809, 9341152506044172865, 241084169507148900481, 6559259107807215358081
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(n-3*k)/(n-3*k)!.
a(n) == 1 (mod 6).
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / ((1 + LambertW(1/3)) * 3^(n+4) * exp(n) * LambertW(1/3)^(n+3)). - Vaclav Kotesovec, Aug 21 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x^3)))
(PARI) a(n) = n!*sum(k=0, n\3, (k+1)^(n-3*k)/(n-3*k)!);
CROSSREFS
Sequence in context: A207083 A207177 A207089 * A362392 A224150 A094430
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 21 2024
STATUS
approved