login
A127097
Triangle T(n,m) = A127093 * A126988 read by rows.
5
1, 5, 2, 10, 0, 3, 21, 10, 0, 4, 26, 0, 0, 0, 5, 50, 20, 15, 0, 0, 6, 50, 0, 0, 0, 0, 0, 7, 85, 42, 0, 20, 0, 0, 0, 8, 91, 0, 30, 0, 0, 0, 0, 0, 9, 130, 52, 0, 0, 25, 0, 0, 0, 0, 10, 122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 210, 100, 63, 40, 0, 30, 0, 0, 0, 0, 0, 12, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
Multiply the infinite lower triangular matrices A127093 and A126988.
FORMULA
T(n,m) = sum_{j=m..n} A127093(n,j)*A126988(j,m).
T(n,1) = A001157(n).
EXAMPLE
First few rows of the triangle are:
1;
5, 2;
10, 0, 3;
21, 10, 0, 4;
26, 0, 0, 0, 5;
50, 20, 15, 0, 0, 6;
50, 0, 0, 0, 0, 0, 7;
...
MAPLE
A127093 := proc(n, m) if n mod m = 0 then m; else 0 ; fi; end:
A126988 := proc(n, k) if n mod k = 0 then n/k; else 0; fi; end:
A127097 := proc(n, m) add( A127093(n, j)*A126988(j, m), j=m..n) ; end:
for n from 1 to 15 do for m from 1 to n do printf("%d, ", A127097(n, m)) ; od: od: # R. J. Mathar, Aug 18 2009
CROSSREFS
Sequence in context: A367210 A375613 A127098 * A040024 A196385 A178714
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 05 2007
EXTENSIONS
A-numbers corrected by R. J. Mathar, Aug 18 2009
STATUS
approved