OFFSET
0,7
EXAMPLE
Triangle begins:
1
1 0
1 1 0
3 0 1 0
4 2 1 1 0
7 4 4 0 1 0
14 5 6 5 1 1 0
23 14 10 10 6 0 1 0
39 26 29 12 14 6 1 1 0
71 46 54 40 19 16 9 0 1 0
124 92 96 82 64 22 22 8 1 1 0
Row n = 6 counts the following compositions:
(6) (411) (3111) (33) (222) (111111) .
(51) (114) (1113) (2211)
(15) (1311) (1221) (1122)
(42) (1131) (12111) (21111)
(24) (2112) (11211) (11112)
(141) (11121)
(321)
(312)
(231)
(213)
(132)
(123)
(2121)
(1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
MATHEMATICA
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]], {n, 0, 10}, {k, 0, n}]
CROSSREFS
Column k = 0 is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373949 with rows reversed.
Column k = 1 is A373950.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jun 28 2024
STATUS
approved