login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373951
Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.
36
1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 2, 1, 1, 0, 7, 4, 4, 0, 1, 0, 14, 5, 6, 5, 1, 1, 0, 23, 14, 10, 10, 6, 0, 1, 0, 39, 26, 29, 12, 14, 6, 1, 1, 0, 71, 46, 54, 40, 19, 16, 9, 0, 1, 0, 124, 92, 96, 82, 64, 22, 22, 8, 1, 1, 0, 214, 176, 204, 144, 137, 82, 30, 26, 10, 0, 1, 0
OFFSET
0,7
EXAMPLE
Triangle begins:
1
1 0
1 1 0
3 0 1 0
4 2 1 1 0
7 4 4 0 1 0
14 5 6 5 1 1 0
23 14 10 10 6 0 1 0
39 26 29 12 14 6 1 1 0
71 46 54 40 19 16 9 0 1 0
124 92 96 82 64 22 22 8 1 1 0
Row n = 6 counts the following compositions:
(6) (411) (3111) (33) (222) (111111) .
(51) (114) (1113) (2211)
(15) (1311) (1221) (1122)
(42) (1131) (12111) (21111)
(24) (2112) (11211) (11112)
(141) (11121)
(321)
(312)
(231)
(213)
(132)
(123)
(2121)
(1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
MATHEMATICA
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]], {n, 0, 10}, {k, 0, n}]
CROSSREFS
Column k = 0 is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373949 with rows reversed.
Column k = 1 is A373950.
This statistic is represented by A373954, difference A373953.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
Sequence in context: A035695 A100257 A318315 * A329861 A331332 A300228
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jun 28 2024
STATUS
approved