login
A373710
Triangle read by rows: T(n,k) is the area of the square whose vertices divide the sides n of a circumscribed square into integer sections k and n - k, 0 <= k <= floor(n/2).
1
0, 1, 4, 2, 9, 5, 16, 10, 8, 25, 17, 13, 36, 26, 20, 18, 49, 37, 29, 25, 64, 50, 40, 34, 32, 81, 65, 53, 45, 41, 100, 82, 68, 58, 52, 50, 121, 101, 85, 73, 65, 61, 144, 122, 104, 90, 80, 74, 72, 169, 145, 125, 109, 97, 89, 85, 196, 170, 148, 130, 116, 106, 100, 98
OFFSET
0,3
COMMENTS
For a sketch see linked illustration "Square in square".
LINKS
FORMULA
T(n,k) = n^2 + 2*k^2 - 2*n*k, 0 <= k <= floor(n/2).
Sequence of row n = r: a(i) = 2*i^2 - 4*i - 2*r*i + r^2 + 2*r + 2, 1 <= i <= floor(r/2 + 1).
Sequence of column k = c: a(j) = j^2 - 2*j + 2*c*j + 2*c^2 - 2*c + 1, j >= 1.
EXAMPLE
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0 0
1 1
2 4 2
3 9 5
4 16 10 8
5 25 17 13
6 36 26 20 18
7 49 37 29 25
8 64 50 40 34 32
9 81 65 53 45 41
10 100 82 68 58 52 50
11 121 101 85 73 65 61
12 144 122 104 90 80 74 72
13 169 145 125 109 97 89 85
14 196 170 148 130 116 106 100 98
...
MAPLE
A373710:=(n, k)->n^2+2*k^2-2*n*k;
seq(seq(A373710(n, k), k=0..floor(n/2)), n=0..14);
CROSSREFS
Cf. A000290(first column), A005563 (second column), A048147 (rows: first half of each diagonal there), A087475 (third column), A189834 (fourth column), A241751 (fifth column).
Sequence in context: A008831 A365378 A289506 * A363268 A213778 A095833
KEYWORD
nonn,tabf,easy
AUTHOR
Felix Huber, Jun 17 2024
STATUS
approved