login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373709
Partial sums of A119387.
3
0, 0, 1, 1, 3, 4, 6, 6, 9, 11, 14, 15, 18, 20, 23, 23, 27, 30, 34, 36, 40, 43, 47, 48, 52, 55, 59, 61, 65, 68, 72, 72, 77, 81, 86, 89, 94, 98, 103, 105, 110, 114, 119, 122, 127, 131, 136, 137, 142, 146, 151, 154, 159, 163, 168, 170, 175, 179, 184, 187, 192
OFFSET
0,5
FORMULA
a(n) = Sum_{m = 0..n} A119387(m).
a(n) = (n+2)*d - 2*n - 2^d + p - 1, with d = bit_width(n+1) = A070939(n+1) and p = popcount(n+1) = A000120(n+1).
a(n) = A001855(n+2) - A005187(n+1).
MAPLE
a:= proc(n) option remember; `if`(n<0, 0,
a(n-1)+ilog2(n+1)-padic[ordp](n+1, 2))
end:
seq(a(n), n=0..60); # Alois P. Heinz, Jun 23 2024
MATHEMATICA
Accumulate[Table[BitLength[k] - 1 - IntegerExponent[k, 2], {k, 100}]] (* Paolo Xausa, Oct 01 2024 *)
PROG
(PARI)
bit_width(n)=logint(n, 2)+1;
a(n)=my(d=bit_width(n+1), p=hammingweight(n+1)); (n+2)*d-2*n-2^d+p-1;
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Antoine Mathys, Jun 14 2024
STATUS
approved