OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = A154533(n+1). - R. J. Mathar, May 16 2011
G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - R. J. Mathar, Aug 31 2011
E.g.f.: (9 + x + x^2)*exp(x). - G. C. Greubel, Jan 13 2018
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi).
Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End)
MATHEMATICA
Table[n^2+9, {n, 0, 100}]
LinearRecurrence[{3, -3, 1}, {9, 10, 13}, 50] (* Harvey P. Dale, Aug 21 2020 *)
PROG
(Magma) [n^2+9: n in [0..50]]; // Vincenzo Librandi, Aug 31 2011
(PARI) a(n)=n^2+9 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Apr 28 2011
STATUS
approved