Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Feb 12 2024 02:28:53
%S 9,10,13,18,25,34,45,58,73,90,109,130,153,178,205,234,265,298,333,370,
%T 409,450,493,538,585,634,685,738,793,850,909,970,1033,1098,1165,1234,
%U 1305,1378,1453,1530,1609,1690,1773,1858,1945
%N a(n) = n^2 + 9.
%H Vincenzo Librandi, <a href="/A189834/b189834.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = A154533(n+1). - _R. J. Mathar_, May 16 2011
%F G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - _R. J. Mathar_, Aug 31 2011
%F E.g.f.: (9 + x + x^2)*exp(x). - _G. C. Greubel_, Jan 13 2018
%F From _Amiram Eldar_, Nov 02 2020: (Start)
%F Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18.
%F Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End)
%F From _Amiram Eldar_, Feb 12 2024: (Start)
%F Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi).
%F Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End)
%t Table[n^2+9,{n,0,100}]
%t LinearRecurrence[{3,-3,1},{9,10,13},50] (* _Harvey P. Dale_, Aug 21 2020 *)
%o (Magma) [n^2+9: n in [0..50]]; // _Vincenzo Librandi_, Aug 31 2011
%o (PARI) a(n)=n^2+9 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A002522, A059100, A117950, A087475, A154533.
%K nonn,easy
%O 0,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011