login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189832
Expansion of 2/((x+3)*sqrt(-3*x^2-2*x+1)+3*x^2+2*x-1).
1
1, 0, 2, 4, 11, 30, 83, 232, 655, 1860, 5312, 15236, 43863, 126672, 366802, 1064624, 3096347, 9021696, 26328470, 76946524, 225172981, 659711646, 1934891191, 5680457960, 16691655761, 49087826580, 144470474228, 425491536172, 1253971031195, 3697850012310
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..(n+1)} (Sum_{j=k..(n+1)} binomial(-k+2*j-1,j-1)*(-1)^(n+1-j)*binomial(n+1,j)))*(1-(-1)^k)/2*(-1)^((k-1)/2)).
D-finite with recurrence: 6*n*a(n) +2*(-2*n+1)*a(n-1) +(-29*n+30)*a(n-2) +(-33*n+47)*a(n-3) +(-17*n+32)*a(n-4) +3*(-n+3)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[2/((x+3)Sqrt[-3 x^2-2x+1]+3x^2+2x-1), {x, 0, 40}], x] (* Harvey P. Dale, Aug 10 2013 *)
PROG
(Maxima) a(n):=sum((sum(binomial(-k+2*j-1, j-1)*(-1)^(n+1-j)* binomial(n+1, j), j, k, n+1))*(1-(-1)^k)/2*(-1)^((k-1)/2), k, 1, n+1);
(PARI) x='x+O('x^30); Vec(2/((x+3)*sqrt(-3*x^2-2*x+1)+3*x^2+2*x-1)) \\ G. C. Greubel, Jan 14 2018
(Magma) /* Expansion */ Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 30); R!(2/((x+3)*Sqrt(-3*x^2-2*x+1)+3*x^2+2*x-1)); // G. C. Greubel, Jan 14 2018
CROSSREFS
Sequence in context: A219017 A285216 A212422 * A193062 A193061 A193060
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 03 2011
EXTENSIONS
More terms from Harvey P. Dale, Aug 10 2013
STATUS
approved