login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373435
Iterate the function x <- phi(sigma(x)). The sequence lists the smaller member of cycles of length 2.
10
4, 48, 72, 432, 1728, 10368, 184320, 1658880, 6220800, 10222080, 12856320000
OFFSET
1,1
COMMENTS
A cycle of length 2 also starts at 3852635996160. 3852635996160, 4869303828480, and 23971865863680 are also terms in the sequence. The sequence is complete through 10^13. - Jud McCranie, Sep 14 2024
166144927334400, 273145872384000, 1904394240000000,2779315686604800, 3644668394864640, 32729712349340160, 48693038284800000, 86790832128000000, 382404221337600000, 2684203735449600000, 5246585916751872000, 6169596402106368000, 13477567109529600000, 22998695842676736000, 38039819551128944640, 90555444080640000000, 102336861080974786560, 130026464870400000000, 222489728778240000000, 499064687988572160000, 2927044657152000000000, 19697331219625672704000, 23473340597403648000000, 73262977439150112768000, 1362680919097344000000000, 14128156119169341849600000, 16615689577928023080960000, 53129683677797469388800000, 6512790537509850316800000000, 125020570798295875584000000000, 201603700212193346715648000000, 1622429777898127409283072000000, 2631371767787268127693209600000, 71803515676046099742720000000000, 105852742809627160240717824000000000, 5528044915051901005564508897280000000, 15042880212263420006968149934080000000, 2013381648407800940932784726212608000000, 67868597277402193009117012867153920000000, 17285817653863442809402049534361600000000000 are also in this sequence. - Richard R. Forberg, Oct 27 2024
EXAMPLE
phi(sigma(4)) = 6 and phi(sigma(6)) = 4, so 4 (the smallest term) is in the sequence.
MATHEMATICA
Select[Range[10^6], # == EulerPhi[DivisorSigma[1, EulerPhi[DivisorSigma[1, #]]]] && # < EulerPhi[DivisorSigma[1, #]]&] (* Stefano Spezia, Jun 07 2024 *)
PROG
(PARI) isok(x) = my(y = eulerphi(sigma(x))); if (y > x, x == eulerphi(sigma(y))); \\ Michel Marcus, Jun 06 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jud McCranie, Jun 06 2024
STATUS
approved