login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362402
Positive numbers m such that a record number of numbers k have m as the sum of divisors of k that have a square factor (A162296).
2
1, 4, 48, 72, 216, 288, 864, 1440, 1728, 2880, 3456, 4320, 5184, 5760, 8640, 12096, 17280, 25920, 34560, 48384, 51840, 69120, 103680, 120960, 155520, 181440, 207360, 241920, 311040, 362880, 483840, 622080, 725760, 967680, 1088640, 1209600, 1451520, 2177280, 2903040
OFFSET
1,2
COMMENTS
The value 0 appears in the range of A162296 for all squarefree numbers (A005117) and therefore it is excluded from this sequence.
The corresponding record values are in A362403.
Except for 1, a subsequence of A362401.
LINKS
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Array[s, max], 0 < # <= max &], sq = {1}, t, tmax = 0}, t = Sort[Tally[v]]; Do[If[t[[k]][[2]] > tmax, tmax = t[[k]][[2]]; AppendTo[sq, t[[k]][[1]]]], {k, 1, Length[t]}]; sq]; seq[10^5]
PROG
(PARI) s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1); }
lista(kmax) = {my(v = vector(kmax), vmax = 0, i); for(k=1, kmax, i = s(k); if(i > 0 && i <= kmax, v[i]++)); print1(1, ", "); for(k=1, kmax, if(v[k] > vmax, vmax = v[k]; print1(k, ", "))); }
CROSSREFS
Similar sequences: A097942, A100827, A145899, A238895.
Sequence in context: A370417 A242225 A157818 * A373435 A048608 A366492
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 18 2023
STATUS
approved