login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362405
Numbers k such that k, k+1 and k+2 are all in A362401.
2
1638, 1848, 3798, 11448, 16854, 26910, 35574, 37248, 57120, 69678, 69822, 85848, 94248, 110526, 208848, 272214, 305046, 310248, 335478, 335479, 368448, 573048, 580680, 687240, 1017126, 1154270, 1230606, 1289358, 1423248, 1467414, 1697808, 1718880, 1776750, 1777248
OFFSET
1,1
COMMENTS
Up to 10^8, k = 335478 is the only number k such that k, k+1, k+2 and k+3 are all in A362401. Are there any other such terms?
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..132 (terms below 10^8)
EXAMPLE
1638 is a term since 1638, 1639 and 1640 are all in the range of A162296: A162296(1053) = 1638, A162296(576) = 1639 and A162296(1636) = 1640.
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Union[Array[s, max]], 0 < # <= max &], w, i, j}, i = Position[Differences[v], 1] // Flatten; w = v[[i]]; j = Position[Differences[w], 1] // Flatten; w[[j]]]; seq[10^6]
PROG
(PARI) s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1); }
lista(kmax) = {my(v = select(x -> (x < kmax), Set(vector(kmax, k, s(k))))); for(k=1, #v-2, if(v[k+1] - v[k] == 1 && v[k+2] - v[k+1] == 1, print1(v[k], ", "))); }
CROSSREFS
Subsequence of A362401 and A362404.
Cf. A162296.
Sequence in context: A054808 A218010 A298075 * A239160 A206234 A158775
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 18 2023
STATUS
approved