login
A158775
a(n) = 1600*n^2 + 40.
2
1640, 6440, 14440, 25640, 40040, 57640, 78440, 102440, 129640, 160040, 193640, 230440, 270440, 313640, 360040, 409640, 462440, 518440, 577640, 640040, 705640, 774440, 846440, 921640, 1000040, 1081640, 1166440, 1254440, 1345640, 1440040, 1537640, 1638440, 1742440
OFFSET
1,1
COMMENTS
The identity (80*n^2 + 1)^2 - (1600*n^2 + 40)*(2*n)^2 = 1 can be written as A158776(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
From R. J. Mathar, Jul 26 2009: (Start)
G.f.: -40*x*(41 + 38*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 24 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) - 1)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)))/80. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1640, 6440, 14440}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
1600*Range[30]^2+ 40 (* Harvey P. Dale, Jun 02 2020 *)
PROG
(Magma) I:=[1640, 6440, 14440]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
(PARI) for(n=1, 40, print1(1600*n^2 + 40", ")); \\ Vincenzo Librandi, Feb 20 2012
CROSSREFS
Sequence in context: A362405 A239160 A206234 * A234986 A043464 A002434
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 26 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
STATUS
approved