login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158774
a(n) = 80*n^2 - 1.
2
79, 319, 719, 1279, 1999, 2879, 3919, 5119, 6479, 7999, 9679, 11519, 13519, 15679, 17999, 20479, 23119, 25919, 28879, 31999, 35279, 38719, 42319, 46079, 49999, 54079, 58319, 62719, 67279, 71999, 76879, 81919, 87119, 92479, 97999, 103679, 109519, 115519, 121679
OFFSET
1,1
COMMENTS
The identity (80*n^2 - 1)^2 - (1600*n^2 - 40)*(2*n)^2 = 1 can be written as a(n)^2 - A158773(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
From R. J. Mathar, Jul 26 2009: (Start)
G.f.: x*(-79 - 82*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 24 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(5)))*Pi/(4*sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(5)))*Pi/(4*sqrt(5)) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {79, 319, 719}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
80*Range[40]^2-1 (* Harvey P. Dale, Apr 21 2018 *)
PROG
(Magma) I:=[79, 319, 719]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
(PARI) for(n=1, 40, print1(80*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 20 2012
CROSSREFS
Sequence in context: A082077 A341182 A158769 * A157507 A142897 A142330
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 26 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
STATUS
approved