login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373437
Integers k such that sigma(sigma(2*k))=2*sigma(sigma(k)); sigma=A000203.
0
2, 6, 14, 18, 38, 42, 50, 54, 62, 74, 86, 114, 122, 126, 134, 146, 150, 158, 162, 186, 206, 218, 222, 254, 258, 266, 302, 314, 326, 342, 350, 366, 378, 386, 398, 402, 422, 434, 438, 450, 458, 474, 482, 518, 542, 554, 558, 566, 578, 602, 618, 626, 654, 662, 666, 674, 686, 734, 746, 758, 762, 774, 794
OFFSET
1,1
LINKS
Graeme L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Exp. Math., 5 (1996), 91-100.
MAPLE
with(numtheory):
P := proc (q)
local n, result:
result := []:
for n to q do
if sigma(sigma(2*n)) = 2*sigma(sigma(n)) then
result := [op(result), n]:
end if
end do:
print(result):
end proc:
P(10^3);
MATHEMATICA
Select[Range[800], DivisorSigma[1, DivisorSigma[1, 2#]]==2DivisorSigma[1, DivisorSigma[1, #]]&] (* Stefano Spezia, Jun 05 2024 *)
PROG
(Python)
from sympy import divisor_sigma as sigma
def P(q):
result = []
for n in range(1, q + 1):
if sigma(sigma(2 * n)) == 2 * sigma(sigma(n)):
result.append(n)
print(result)
P(10**3)
CROSSREFS
Sequence in context: A186299 A163777 A215807 * A140525 A189804 A308394
KEYWORD
nonn
AUTHOR
Rafik Khalfi, Jun 04 2024
STATUS
approved