OFFSET
1,4
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).
a(n) is the denominator of Sum_{d^2|n} 1/d^2.
EXAMPLE
1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
MATHEMATICA
nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator
f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
PROG
(PARI) a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Jun 05 2024
STATUS
approved