login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of sum of reciprocals of square divisors of n.
2

%I #15 Jun 26 2024 06:02:22

%S 1,1,1,4,1,1,1,4,9,1,1,4,1,1,1,16,1,9,1,4,1,1,1,4,25,1,9,4,1,1,1,16,1,

%T 1,1,18,1,1,1,4,1,1,1,4,9,1,1,16,49,25,1,4,1,9,1,4,1,1,1,4,1,1,9,64,1,

%U 1,1,4,1,1,1,18,1,1,25,4,1,1,1,16,81,1,1,4,1

%N Denominator of sum of reciprocals of square divisors of n.

%H Amiram Eldar, <a href="/A373440/b373440.txt">Table of n, a(n) for n = 1..10000</a>

%F Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).

%F a(n) is the denominator of Sum_{d^2|n} 1/d^2.

%e 1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...

%t nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator

%t f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Jun 26 2024 *)

%o (PARI) a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ _Michel Marcus_, Jun 05 2024

%Y Cf. A007407, A007947, A017666, A017668, A035316, A332881, A373439 (numerators).

%K nonn,frac

%O 1,4

%A _Ilya Gutkovskiy_, Jun 05 2024