OFFSET
1,4
COMMENTS
Signed version of A008833.
FORMULA
Dirichlet g.f.: zeta(2*s-2) / zeta(s).
Dirichlet inverse b(n), n > 0, is multiplicative with b(p) = 1 and b(p^e) = 1 - p^2 for prime p and e > 1.
Conjecture: a(n) = Sum_{k=1..n} gcd(k, n) * lambda(gcd(k, n)) for n > 0.
MAPLE
A358272 := proc(n)
local a, pe, e, p ;
a := 1;
for pe in ifactors(n)[2] do
e := op(2, pe) ;
p := op(1, pe) ;
a := a*(-1)^e*p^(2*floor(e/2)) ;
end do:
a ;
end proc:
seq(A358272(n), n=1..80) ; # R. J. Mathar, Jan 17 2023
MATHEMATICA
f[p_, e_] := (-1)^e * p^(2*Floor[e/2]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
PROG
(Python)
from math import prod
from sympy import factorint
def A358272(n): return prod(-p**(e&-2) if e&1 else p**(e&-2) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 17 2023
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Werner Schulte, Nov 07 2022
STATUS
approved