OFFSET
0,3
COMMENTS
Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).
EXAMPLE
The partition (3,2,1) has rank 2^(3-1) + 2^(2-1) + 2^(1-1) = 7, which is prime, so (3,2,1) is counted under a(6).
The a(2) = 2 through a(10) = 9 partitions:
(2) (21) (31) (221) (51) (421) (431) (441) (91)
(11) (111) (2111) (321) (2221) (521) (3321) (631)
(11111) (3111) (4111) (5111) (4221) (721)
(22111) (33111) (3331)
(211111) (42111) (7111)
(1111111) (411111) (32221)
(322111)
(3211111)
(31111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^#]/2]&]], {n, 0, 30}]
CROSSREFS
For all positive integers (not just prime) we get A000041.
These partitions have Heinz numbers A277319.
A014499 lists binary indices of prime numbers.
- length A000120
- min A001511
- sum A029931
- max A070939
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2024
STATUS
approved