login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372604
The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.
4
0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A331273 at n = 32.
Differs from A368247 at n = 1, 128, 216, 256, 384, 432, 512, ... .
All the terms are of the form 2^k-1 (A000225).
LINKS
FORMULA
a(n) = A051903(A372379(n)).
a(n) = A092323(A051903(n)+1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{i>=1} 2^i * (1 - 1/zeta(2^(i+1)-1)) = 1.36955053734097783559... .
EXAMPLE
4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.
MATHEMATICA
f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
PROG
(PARI) s(n) = 2^exponent(n+1) - 1;
a(n) = if(n>1, s(vecmax(factor(n)[, 2])), 0);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 07 2024
STATUS
approved