login
A372604
The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.
4
0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A331273 at n = 32.
Differs from A368247 at n = 1, 128, 216, 256, 384, 432, 512, ... .
All the terms are of the form 2^k-1 (A000225).
LINKS
FORMULA
a(n) = A051903(A372379(n)).
a(n) = A092323(A051903(n)+1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{i>=1} 2^i * (1 - 1/zeta(2^(i+1)-1)) = 1.36955053734097783559... .
EXAMPLE
4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.
MATHEMATICA
f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
PROG
(PARI) s(n) = 2^exponent(n+1) - 1;
a(n) = if(n>1, s(vecmax(factor(n)[, 2])), 0);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 07 2024
STATUS
approved