login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185358
The period of the sequence i^i (mod n) starts from i=a(n).
2
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1
OFFSET
1,8
LINKS
R. Hampel, The length of the shortest period of rests of numbers n^n, Ann. Polon. Math. 1 (1955), 360-366.
FORMULA
If n = Product_{pi^ei} then a(n) = Max_{1- pi*(1+floor[-ei/pi])}.
MATHEMATICA
a[p_, e_]:=1- p*(1+Floor[-e/p]); a[n_]:=Max@Module[{fa=FactorInteger[n]}, Table[a[fa[[i, 1]], fa[[i, 2]]], {i, 1, Length[fa]}]]; Table[a[n], {n, 1, 84}]
PROG
(Python)
from sympy import factorint, floor
def a(n):
f=factorint(n)
return 1 if n==1 else max(1 - i*(1 + (-f[i])//i) for i in f)
print([a(n) for n in range(1, 201)]) # Indranil Ghosh, Jun 29 2017
CROSSREFS
Cf. A185359.
Sequence in context: A031229 A031228 A031227 * A368247 A372604 A331273
KEYWORD
nonn
AUTHOR
STATUS
approved