login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368247
The number of cubefree divisors of the cubefull part of n (A360540).
2
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,8
LINKS
FORMULA
a(n) = A073184(A360540(n)).
Multiplicative with a(p^e) = 1 if e <= 2, and 3 otherwise.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A073184(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 2/p^3) = 1.37700168952903630206... .
In general, the asymptotic mean of the number of k-free divisors of the k-full part of n is Product_{p prime} (1 + (k-1)/p^k).
MATHEMATICA
f[p_, e_] := If[e > 2, 3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x < 3, 1, 3), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 19 2023
STATUS
approved