login
A372602
The maximal exponent in the prime factorization of the largest square dividing n.
5
0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
OFFSET
1,4
LINKS
FORMULA
a(n) = A051903(A008833(n)).
a(n) = A052928(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * Sum_{i>=1} (1 - (1/zeta(2*i))) = 0.98112786070359477197... .
MATHEMATICA
f[n_] := 2 * Floor[n/2]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
PROG
(PARI) s(n) = n \ 2 * 2;
a(n) = if(n>1, s(vecmax(factor(n)[, 2])), 0);
CROSSREFS
Similar sequences: A007424, A368781, A372601, A372603, A372604.
Sequence in context: A071548 A369309 A216228 * A374202 A291957 A143063
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 07 2024
STATUS
approved