login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379012
a(n) = A034444(n) if n is powerful (A001694), and 0 otherwise.
1
1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
OFFSET
1,4
LINKS
Kampamolla Venkatasubbareddy and Ayyadurai Sankaranarayanan, On the distribution of the restricted sequence of integers 2^omega(n), INTEGERS, Vol. 24 (2024), #A110.
FORMULA
a(n) = A112526(n) * A034444(n) = A112526(n) * 2^A001221(n).
Multiplicative with a(p^e) = 2 if e > 1, and 0 otherwise.
Dirichlet g.f.: Product_{p prime} (1 + 2 * Sum_{k>=2} 1/p^(k*s)).
Sum_{k=1..n} a(k) = c_1 * sqrt(n) * log(n) + c_2 * sqrt(n) + c_3 * n^(1/3) * log(n) + c_4 * n^(1/3) + O(n^(1/4) * exp(c*eps*(log(n)/log(log(n)))^(1/3))), for eps > 0 and some c > 0 where c_1, c_2, c_3 and c_4 are constants (Venkatasubbareddy and Sankaranarayanan, 2024).
MATHEMATICA
f[p_, e_] := If[e > 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] > 1, 2, 0)); }
CROSSREFS
KEYWORD
nonn,easy,mult,new
AUTHOR
Amiram Eldar, Dec 13 2024
STATUS
approved