login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.
4

%I #9 May 08 2024 08:52:54

%S 0,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,3,1,1,

%T 1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,3,1,1,1,1,

%U 1,1,1,3,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1

%N The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.

%C First differs from A331273 at n = 32.

%C Differs from A368247 at n = 1, 128, 216, 256, 384, 432, 512, ... .

%C All the terms are of the form 2^k-1 (A000225).

%H Amiram Eldar, <a href="/A372604/b372604.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A051903(A372379(n)).

%F a(n) = A092323(A051903(n)+1).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{i>=1} 2^i * (1 - 1/zeta(2^(i+1)-1)) = 1.36955053734097783559... .

%e 4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.

%t f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]

%o (PARI) s(n) = 2^exponent(n+1) - 1;

%o a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

%Y Cf. A000225, A051903, A092323, A372379, A372466.

%Y Cf. A331273, A368247.

%Y Similar sequences: A007424, A368781, A372601, A372602, A372603.

%K nonn,easy

%O 1,8

%A _Amiram Eldar_, May 07 2024