login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372537
G.f. A(x) satisfies A(A(A(A(x)))) = x + 4*x^2 + 16*x^3.
3
0, 1, 1, 1, -15, 81, -159, -1695, 19857, -77775, -372351, 6628545, -24096975, -232640751, 2756221601, 2199811873, -210934282287, 553408050417, 17722961332929, -95716389015423, -1950283855292559, 15527782649242065, 285278599792984545, -3006768595808218911
OFFSET
0,5
LINKS
FORMULA
Define the sequence b(n,m) as follows. If n<m, b(n,m) = 0, else if n=m, b(n,m) = 1, otherwise b(n,m) = 1/4 * ( 4^(n-m) * Sum_{l=0..m} binomial(l,n-3*m+2*l) * binomial(m,l) - Sum_{l=m+1..n-1} (b(n,l) + Sum_{k=l..n} (b(n,k) + Sum_{j=k..n} b(n,j) * b(j,k)) * b(k,l)) * b(l,m) ). a(n) = b(n,1).
Let B(x) = A(A(x)).
B(B(x)) = x + 4*x^2 + 16*x^3.
B(x) = F(2*x)/2, where F(x) is the g.f. for A220110.
EXAMPLE
A(A(x)) = x + 2*x^2 + 4*x^3 - 24*x^4 + 80*x^5 + 32*x^6 - 2496*x^7 + 14976*x^8 + ...
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 05 2024
STATUS
approved