login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies A(A(A(A(x)))) = x + 4*x^2 + 16*x^3.
3

%I #18 May 05 2024 14:07:15

%S 0,1,1,1,-15,81,-159,-1695,19857,-77775,-372351,6628545,-24096975,

%T -232640751,2756221601,2199811873,-210934282287,553408050417,

%U 17722961332929,-95716389015423,-1950283855292559,15527782649242065,285278599792984545,-3006768595808218911

%N G.f. A(x) satisfies A(A(A(A(x)))) = x + 4*x^2 + 16*x^3.

%H Seiichi Manyama, <a href="/A372537/b372537.txt">Table of n, a(n) for n = 0..486</a>

%F Define the sequence b(n,m) as follows. If n<m, b(n,m) = 0, else if n=m, b(n,m) = 1, otherwise b(n,m) = 1/4 * ( 4^(n-m) * Sum_{l=0..m} binomial(l,n-3*m+2*l) * binomial(m,l) - Sum_{l=m+1..n-1} (b(n,l) + Sum_{k=l..n} (b(n,k) + Sum_{j=k..n} b(n,j) * b(j,k)) * b(k,l)) * b(l,m) ). a(n) = b(n,1).

%F Let B(x) = A(A(x)).

%F B(B(x)) = x + 4*x^2 + 16*x^3.

%F B(x) = F(2*x)/2, where F(x) is the g.f. for A220110.

%e A(A(x)) = x + 2*x^2 + 4*x^3 - 24*x^4 + 80*x^5 + 32*x^6 - 2496*x^7 + 14976*x^8 + ...

%Y Cf. A220110, A220288, A371841, A372521.

%K sign

%O 0,5

%A _Seiichi Manyama_, May 05 2024