login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372536
Expansion of g.f. A(x) satisfies A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).
1
1, 6, 39, 270, 1959, 14724, 113706, 896994, 7198257, 58580766, 482345919, 4011022800, 33637868973, 284174749008, 2416159097325, 20659453627698, 177537776891964, 1532534613873966, 13282539993100539, 115540763819844726, 1008387790883534547, 8827387038953362476, 77488784299830377412
OFFSET
1,2
COMMENTS
Compare to F( F(x)^2/(1 + 2*F(x))^2 ) = x*F(x) when F(x) = x/(1 - 4*x).
Conjectures:
(1) a(n) == 0 (mod 3) for n > 0.
(2) a(4^n+1) == 6 (mod 9) and a(2*4^n+1) == 3 (mod 9) for n >= 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n along with its series reversion R(x), satisfies the following formulas.
(1) A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).
(2) A( (1/x) * A(x^2/(1 + 3*x)^2) ) = x.
(3) A( x^2/(1 + 3*x)^2 ) = x*R(x) where A(R(x)) = x.
(4) A(x^2) = R( x/(1 - 3*x) ) * x/(1 - 3*x) where R(A(x)) = x.
(5) R( x*R(x) ) = x^2/(1 + 3*x)^2 where R(A(x)) = x.
EXAMPLE
G.f.: A(x) = x + 6*x^2 + 39*x^3 + 270*x^4 + 1959*x^5 + 14724*x^6 + 113706*x^7 + 896994*x^8 + 7198257*x^9 + 58580766*x^10 + ...
where A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).
RELATED SERIES.
A(x)/(1 + 3*A(x)) = x + 3*x^2 + 12*x^3 + 63*x^4 + 393*x^5 + 2700*x^6 + 19638*x^7 + 148311*x^8 + 1150959*x^9 + 9120015*x^10 + ...
A(x)^2/(1 + 3*A(x))^2 = x^2 + 6*x^3 + 33*x^4 + 198*x^5 + 1308*x^6 + 9270*x^7 + 68877*x^8 + 528768*x^9 + 4157745*x^10 + ...
Let R(x) be the series reversion of A(x), R(A(x)) = x, then
R(x) = x - 6*x^2 + 33*x^3 - 180*x^4 + 984*x^5 - 5400*x^6 + 29754*x^7 - 164592*x^8 + 913938*x^9 - 5093244*x^10 + ...
SPECIFIC VALUES.
A(t) = 1 at t = A(1/16) = 0.10317279669579230295027576579252717989833579024...
A(t) = 1/2 at t = 2*A(1/25) = 0.1061508484665129500171873459941969232301870...
A(t) = 1/3 at t = 3*A(1/36) = 0.1003352603928806223818500963742672318320239...
A(t) = 1/4 at t = 4*A(1/49) = 0.0931746054665880225723638980700677838877663...
A(t) = 1/5 at t = 5*A(1/64) = 0.0862838920959754114526744600000633965142439...
A(t) = 1/6 at t = 6*A(1/81) = 0.0800427051964615614631388794610266659084609...
A(t) = 1/7 at t = 7*A(1/100) = 0.074493383010172543991350429378892726907769...
A(1/10) = 0.328082324724629985490856998205652119340000639...
A(1/11) = 0.231471123507693119766989879518138044746004716...
A(1/12) = 0.183189828931917973681273703531570036478268877...
A(1/13) = 0.152737756861086935804497387625417005550146684...
A(1/14) = 0.131415473598481160745300630661369723367840939...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A) - subst(Ser(A), x, Ser(A)^2/(1 + 3*Ser(A))^2 ), #A); ); A[n+1]}
for(n=1, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A199491 A147961 A264232 * A068765 A349531 A006633
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 10 2024
STATUS
approved