login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfies A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).
1

%I #10 May 11 2024 09:41:44

%S 1,6,39,270,1959,14724,113706,896994,7198257,58580766,482345919,

%T 4011022800,33637868973,284174749008,2416159097325,20659453627698,

%U 177537776891964,1532534613873966,13282539993100539,115540763819844726,1008387790883534547,8827387038953362476,77488784299830377412

%N Expansion of g.f. A(x) satisfies A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).

%C Compare to F( F(x)^2/(1 + 2*F(x))^2 ) = x*F(x) when F(x) = x/(1 - 4*x).

%C Conjectures:

%C (1) a(n) == 0 (mod 3) for n > 0.

%C (2) a(4^n+1) == 6 (mod 9) and a(2*4^n+1) == 3 (mod 9) for n >= 0.

%H Paul D. Hanna, <a href="/A372536/b372536.txt">Table of n, a(n) for n = 1..520</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n along with its series reversion R(x), satisfies the following formulas.

%F (1) A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).

%F (2) A( (1/x) * A(x^2/(1 + 3*x)^2) ) = x.

%F (3) A( x^2/(1 + 3*x)^2 ) = x*R(x) where A(R(x)) = x.

%F (4) A(x^2) = R( x/(1 - 3*x) ) * x/(1 - 3*x) where R(A(x)) = x.

%F (5) R( x*R(x) ) = x^2/(1 + 3*x)^2 where R(A(x)) = x.

%e G.f.: A(x) = x + 6*x^2 + 39*x^3 + 270*x^4 + 1959*x^5 + 14724*x^6 + 113706*x^7 + 896994*x^8 + 7198257*x^9 + 58580766*x^10 + ...

%e where A( A(x)^2/(1 + 3*A(x))^2 ) = x*A(x).

%e RELATED SERIES.

%e A(x)/(1 + 3*A(x)) = x + 3*x^2 + 12*x^3 + 63*x^4 + 393*x^5 + 2700*x^6 + 19638*x^7 + 148311*x^8 + 1150959*x^9 + 9120015*x^10 + ...

%e A(x)^2/(1 + 3*A(x))^2 = x^2 + 6*x^3 + 33*x^4 + 198*x^5 + 1308*x^6 + 9270*x^7 + 68877*x^8 + 528768*x^9 + 4157745*x^10 + ...

%e Let R(x) be the series reversion of A(x), R(A(x)) = x, then

%e R(x) = x - 6*x^2 + 33*x^3 - 180*x^4 + 984*x^5 - 5400*x^6 + 29754*x^7 - 164592*x^8 + 913938*x^9 - 5093244*x^10 + ...

%e SPECIFIC VALUES.

%e A(t) = 1 at t = A(1/16) = 0.10317279669579230295027576579252717989833579024...

%e A(t) = 1/2 at t = 2*A(1/25) = 0.1061508484665129500171873459941969232301870...

%e A(t) = 1/3 at t = 3*A(1/36) = 0.1003352603928806223818500963742672318320239...

%e A(t) = 1/4 at t = 4*A(1/49) = 0.0931746054665880225723638980700677838877663...

%e A(t) = 1/5 at t = 5*A(1/64) = 0.0862838920959754114526744600000633965142439...

%e A(t) = 1/6 at t = 6*A(1/81) = 0.0800427051964615614631388794610266659084609...

%e A(t) = 1/7 at t = 7*A(1/100) = 0.074493383010172543991350429378892726907769...

%e A(1/10) = 0.328082324724629985490856998205652119340000639...

%e A(1/11) = 0.231471123507693119766989879518138044746004716...

%e A(1/12) = 0.183189828931917973681273703531570036478268877...

%e A(1/13) = 0.152737756861086935804497387625417005550146684...

%e A(1/14) = 0.131415473598481160745300630661369723367840939...

%o (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A=concat(A,0);

%o A[#A] = polcoeff( x*Ser(A) - subst(Ser(A),x, Ser(A)^2/(1 + 3*Ser(A))^2 ), #A); ); A[n+1]}

%o for(n=1,50,print1(a(n),", "))

%K nonn

%O 1,2

%A _Paul D. Hanna_, May 10 2024