login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309336 a(n) = n^4 if n odd, 15*n^4/16 if n even. 1
0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561, 9375, 14641, 19440, 28561, 36015, 50625, 61440, 83521, 98415, 130321, 150000, 194481, 219615, 279841, 311040, 390625, 428415, 531441, 576240, 707281, 759375, 923521, 983040, 1185921, 1252815, 1500625, 1574640, 1874161, 1954815 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Moebius transform of A285989.

LINKS

Table of n, a(n) for n=0..38.

Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).

FORMULA

G.f.: x * (1 + 15*x + 76*x^2 + 165*x^3 + 230*x^4 + 165*x^5 + 76*x^6 + 15*x^7 + x^8)/(1 - x^2)^5.

G.f.: Sum_{k>=1} J_4(k) * x^k/(1 - x^(2*k)), where J_4() is the Jordan function (A059377).

Dirichlet g.f.: zeta(s-4) * (1 - 1/2^s).

a(n) = n^4 * (31 - (-1)^n)/32.

a(n) = Sum_{d|n, n/d odd} J_4(d).

Sum_{n>=1} 1/a(n) = 241*Pi^4/21600 = 1.086832913851601267313987...

MATHEMATICA

a[n_] := If[OddQ[n], n^4, 15 n^4/16]; Table[a[n], {n, 0, 38}]

nmax = 38; CoefficientList[Series[x (1 + 15 x + 76 x^2 + 165 x^3 + 230 x^4 + 165 x^5 + 76 x^6 + 15 x^7 + x^8)/(1 - x^2)^5, {x, 0, nmax}], x]

LinearRecurrence[{0, 5, 0, -10, 0, 10, 0, -5, 0, 1}, {0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561}, 39]

Table[n^4 (31 - (-1)^n)/32, {n, 0, 38}]

CROSSREFS

Cf. A000583, A016756, A026741, A059377, A285989, A308422, A309335.

Sequence in context: A055815 A244855 A102360 * A266288 A213552 A060581

Adjacent sequences:  A309333 A309334 A309335 * A309337 A309338 A309339

KEYWORD

nonn,easy,mult

AUTHOR

Ilya Gutkovskiy, Jul 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 22:46 EDT 2020. Contains 335669 sequences. (Running on oeis4.)