Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 26 2020 16:33:01
%S 0,1,15,81,240,625,1215,2401,3840,6561,9375,14641,19440,28561,36015,
%T 50625,61440,83521,98415,130321,150000,194481,219615,279841,311040,
%U 390625,428415,531441,576240,707281,759375,923521,983040,1185921,1252815,1500625,1574640,1874161,1954815
%N a(n) = n^4 if n odd, 15*n^4/16 if n even.
%C Moebius transform of A285989.
%H Amiram Eldar, <a href="/A309336/b309336.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,5,0,-10,0,10,0,-5,0,1).
%F G.f.: x * (1 + 15*x + 76*x^2 + 165*x^3 + 230*x^4 + 165*x^5 + 76*x^6 + 15*x^7 + x^8)/(1 - x^2)^5.
%F G.f.: Sum_{k>=1} J_4(k) * x^k/(1 - x^(2*k)), where J_4() is the Jordan function (A059377).
%F Dirichlet g.f.: zeta(s-4) * (1 - 1/2^s).
%F a(n) = n^4 * (31 - (-1)^n)/32.
%F a(n) = Sum_{d|n, n/d odd} J_4(d).
%F Sum_{n>=1} 1/a(n) = 241*Pi^4/21600 = 1.086832913851601267313987...
%F Multiplicative with a(2^e) = 15*2^(4*e-4), and a(p^e) = p^(4*e) for odd primes p. - _Amiram Eldar_, Oct 26 2020
%t a[n_] := If[OddQ[n], n^4, 15 n^4/16]; Table[a[n], {n, 0, 38}]
%t nmax = 38; CoefficientList[Series[x (1 + 15 x + 76 x^2 + 165 x^3 + 230 x^4 + 165 x^5 + 76 x^6 + 15 x^7 + x^8)/(1 - x^2)^5, {x, 0, nmax}], x]
%t LinearRecurrence[{0, 5, 0, -10, 0, 10, 0, -5, 0, 1}, {0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561}, 39]
%t Table[n^4 (31 - (-1)^n)/32, {n, 0, 38}]
%Y Cf. A000583, A016756, A026741, A059377, A285989, A308422, A309335.
%K nonn,easy,mult
%O 0,3
%A _Ilya Gutkovskiy_, Jul 24 2019