login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220288
G.f. A(x) satisfies A(A(A(x))) = x+3*x^2+9*x^3.
4
1, 1, 1, -8, 28, -26, -386, 2701, -5399, -42155, 358615, -354212, -10419524, 52825312, 236952352, -3103798967, -3013742105, 176201013745, -164790760103, -11763898514324, 27830312919316, 992172068848126, -3681957974446718, -103284064687144985, 528045230825074855
OFFSET
1,4
LINKS
FORMULA
a(n)=T(n,1), T(n, m)=1/3*(3^(n-m)*sum(j=0..m, binomial(j,n-3*m+2*j)*binomial(m,j))-sum(k=m+1..n-1, T(k, m)*sum(, i=k..n, T(n, i)*T(i, k)))-sum(i=m+1..n-1, T(n, i)*T(i, m))), T(n,n)=1.
MATHEMATICA
t[n_, m_] := t[n, m] = 1/3*(3^(n - m)* Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[k, m]*Sum[t[n, i]*t[i, k], {i, k, n}], {k, m + 1, n - 1}] - Sum[t[n, i]*t[i, m], {i, m + 1, n - 1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 25}] (* Jean-François Alcover, Feb 22 2013 *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/3*(3^(n-m)*sum(binomial(j, n-3*m+2*j)*binomial(m, j), j, 0, m)-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(T(n, 1), n, 1, 7);
CROSSREFS
KEYWORD
sign
AUTHOR
Dmitry Kruchinin, Dec 09 2012
STATUS
approved