login
A201101
T(n,k)=Number of nXk 0..7 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
8
8, 28, 28, 56, 140, 56, 70, 140, 140, 70, 56, 14, 252, 14, 56, 28, 728, 10423, 10423, 728, 28, 8, 3696, 6972, 2490, 6972, 3696, 8, 1, 3273, 85005, 905695, 905695, 85005, 3273, 1, 8, 323, 478198, 89311, 1445712, 89311, 478198, 323, 8, 28, 10516, 27782, 31885648
OFFSET
1,1
COMMENTS
Table starts
..8....28......56........70...........56.............28..............8
.28...140.....140........14..........728...........3696...........3273
.56...140.....252.....10423.........6972..........85005.........478198
.70....14...10423......2490.......905695..........89311.......31885648
.56...728....6972....905695......1445712.......55782998......945668958
.28..3696...85005.....89311.....55782998.....2244318652....12230511648
..8..3273..478198..31885648....945668958....12230511648....80495995176
..1...323...27782...2647438....123026475.....5732148226...155796077603
..8.10516.3937944.656371640..46355746304..1359373604245.18098348588856
.28.37590.5383954..36544193.138881000080.28620297165083
LINKS
FORMULA
T(n,1) = binomial(8,n modulo 8). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
EXAMPLE
Some solutions for n=3 k=3
..0..1..1....0..2..4....0..1..3....0..1..2....0..3..6....0..2..3....0..1..5
..2..4..5....1..3..6....2..5..7....0..4..5....1..4..7....1..4..6....2..3..6
..3..6..7....1..5..7....4..6..7....3..6..7....2..5..7....2..5..7....4..4..7
CROSSREFS
Sequence in context: A272259 A112663 A220288 * A201105 A184614 A006377
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 26 2011
STATUS
approved