login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201101
T(n,k)=Number of nXk 0..7 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
8
8, 28, 28, 56, 140, 56, 70, 140, 140, 70, 56, 14, 252, 14, 56, 28, 728, 10423, 10423, 728, 28, 8, 3696, 6972, 2490, 6972, 3696, 8, 1, 3273, 85005, 905695, 905695, 85005, 3273, 1, 8, 323, 478198, 89311, 1445712, 89311, 478198, 323, 8, 28, 10516, 27782, 31885648
OFFSET
1,1
COMMENTS
Table starts
..8....28......56........70...........56.............28..............8
.28...140.....140........14..........728...........3696...........3273
.56...140.....252.....10423.........6972..........85005.........478198
.70....14...10423......2490.......905695..........89311.......31885648
.56...728....6972....905695......1445712.......55782998......945668958
.28..3696...85005.....89311.....55782998.....2244318652....12230511648
..8..3273..478198..31885648....945668958....12230511648....80495995176
..1...323...27782...2647438....123026475.....5732148226...155796077603
..8.10516.3937944.656371640..46355746304..1359373604245.18098348588856
.28.37590.5383954..36544193.138881000080.28620297165083
LINKS
FORMULA
T(n,1) = binomial(8,n modulo 8). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
EXAMPLE
Some solutions for n=3 k=3
..0..1..1....0..2..4....0..1..3....0..1..2....0..3..6....0..2..3....0..1..5
..2..4..5....1..3..6....2..5..7....0..4..5....1..4..7....1..4..6....2..3..6
..3..6..7....1..5..7....4..6..7....3..6..7....2..5..7....2..5..7....4..4..7
CROSSREFS
Sequence in context: A272259 A112663 A220288 * A201105 A184614 A006377
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 26 2011
STATUS
approved