login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369947
a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.
4
1, 2, 11, 286, 86087, 9603283, 1764195984
OFFSET
0,2
EXAMPLE
a(2) = 11:
3, 2;
2, 5.
a(3) = 286:
3, 11, 5;
11, 5, 7;
5, 7, 2.
a(4) = 86087:
7, 3, 13, 17;
3, 13, 17, 2;
13, 17, 2, 11;
17, 2, 11, 5.
MATHEMATICA
a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
PROG
(PARI) a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
(Python)
from itertools import permutations
from sympy import primerange, prime, Matrix
def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024
CROSSREFS
Cf. A369946 (minimal), A350933 (maximal absolute value), A369949, A350940 (maximal permanent).
Sequence in context: A072386 A185122 A350932 * A198894 A367798 A222206
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Feb 06 2024
EXTENSIONS
a(6) from Michel Marcus, Feb 08 2024
STATUS
approved