login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350933
Maximal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.
8
1, 2, 19, 1115, 86087, 9603283, 2307021183, 683793949387
OFFSET
0,2
COMMENTS
For n X n Hankel matrices the same maximal determinants appear.
LINKS
EXAMPLE
a(2) = 19:
5 2
3 5
a(3) = 1115:
11 2 5
7 11 2
3 7 11
MATHEMATICA
a[n_] := Max[Table[Abs[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
PROG
(Python)
from itertools import permutations
from sympy import Matrix, prime
def A350933(n): return max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1, 2*n))) # Chai Wah Wu, Jan 27 2022
(PARI) a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = abs(matdet(matrix(n, n, i, j, prime(p[i+j-1])))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
CROSSREFS
Sequence in context: A012976 A013107 A369946 * A172028 A365050 A024229
KEYWORD
nonn,more
AUTHOR
Stefano Spezia, Jan 25 2022
EXTENSIONS
a(5) from Alois P. Heinz, Jan 25 2022
a(6)-a(7) from Lucas A. Brown, Aug 27 2022
STATUS
approved