login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.
4

%I #17 Feb 12 2024 12:34:33

%S 1,2,11,286,86087,9603283,1764195984

%N a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a>.

%e a(2) = 11:

%e 3, 2;

%e 2, 5.

%e a(3) = 286:

%e 3, 11, 5;

%e 11, 5, 7;

%e 5, 7, 2.

%e a(4) = 86087:

%e 7, 3, 13, 17;

%e 3, 13, 17, 2;

%e 13, 17, 2, 11;

%e 17, 2, 11, 5.

%t a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]

%o (PARI) a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ _Michel Marcus_, Feb 08 2024

%o (Python)

%o from itertools import permutations

%o from sympy import primerange, prime, Matrix

%o def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # _Chai Wah Wu_, Feb 12 2024

%Y Cf. A024356, A368352.

%Y Cf. A369946 (minimal), A350933 (maximal absolute value), A369949, A350940 (maximal permanent).

%K nonn,hard,more

%O 0,2

%A _Stefano Spezia_, Feb 06 2024

%E a(6) from _Michel Marcus_, Feb 08 2024