login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367098
Number of divisors of n with exactly two distinct prime factors.
3
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 0, 1, 3, 0, 2, 1, 3, 0, 6, 0, 1, 2, 2, 1, 3, 0, 4, 0, 1, 0, 5, 1, 1, 1
OFFSET
1,12
LINKS
FORMULA
a(n) = (A001222(n)^2 - A090885(n))/2. - Amiram Eldar, Jan 08 2024
EXAMPLE
The a(n) divisors for n = 1, 6, 12, 24, 36, 60, 72, 120, 144, 216, 288, 360:
. 6 6 6 6 6 6 6 6 6 6 6
12 12 12 10 12 10 12 12 12 10
24 18 12 18 12 18 18 18 12
36 15 24 15 24 24 24 15
20 36 20 36 36 36 18
72 24 48 54 48 20
40 72 72 72 24
144 108 96 36
216 144 40
288 45
72
MATHEMATICA
Table[Length[Select[Divisors[n], PrimeNu[#]==2&]], {n, 100}]
a[1] = 0; a[n_] := (Total[(e = FactorInteger[n][[;; , 2]])]^2 - Total[e^2])/2; Array[a, 100] (* Amiram Eldar, Jan 08 2024 *)
PROG
(PARI) a(n) = {my(e = factor(n)[, 2]); (vecsum(e)^2 - e~*e)/2; } \\ Amiram Eldar, Jan 08 2024
CROSSREFS
For just one distinct prime factor we have A001222 (prime-power divisors).
This sequence counts divisors belonging to A007774.
Counting all prime factors gives A086971, firsts A220264.
Column k = 2 of A146289.
- Positions of zeros are A000961 (powers of primes), complement A024619.
- Positions of ones are A006881 (squarefree semiprimes).
- Positions of twos are A054753.
- Positions of first appearances are A367099.
A001221 counts distinct prime factors.
A001358 lists semiprimes, complement A100959.
A367096 lists semiprime divisors, sum A076290.
Sequence in context: A327695 A345446 A354911 * A343660 A319058 A281116
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Nov 09 2023
STATUS
approved