login
A366333
a(n) is the number of distinct numbers of diagonal transversals that a semicyclic diagonal Latin square of order 2n+1 can have.
0
1, 0, 1, 1, 0, 2, 20, 0, 271, 1208, 0
OFFSET
0,6
COMMENTS
A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). A vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A338562) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d.
Semicyclic diagonal Latin squares do not exist for even orders n.
EXAMPLE
For n=6*2+1=13 the number of diagonal transversals that a semicyclic diagonal Latin square of order 13 may have is 127339, 127830, 128489, 128519, 128533, 128608, 128751, 128818, 128861, 129046, 129059, 129171, 129243, 129286, 129353, 129474, 129641, 129657, 130323 or 131106. Since there are 20 distinct values, a(6)=20.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Oct 07 2023
STATUS
approved