OFFSET
0,6
COMMENTS
A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example).
LINKS
Eduard I. Vatutin, About the horizontally and vertically semicyclic diagonal Latin squares enumeration (in Russian).
Eduard I. Vatutin, About the spectra of numerical characteristics of different types of cyclic diagonal Latin squares (in Russian).
Eduard I. Vatutin, About the number of main classes of semicyclic diagonal Latin squares of order 17 (in Russian).
Eduard I. Vatutin, About the number of main classes of semicyclic diagonal Latin squares of order 19 (in Russian).
Eduard I. Vatutin, Lists of canonical forms of semicyclic diagonal Latin squares of orders 5-19.
EXAMPLE
Example of horizontally semicyclic diagonal Latin square of order 13:
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2)
4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4)
9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9)
7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7)
12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12)
3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3)
11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11)
6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6)
1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1)
5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5)
10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10)
8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Oct 07 2023
EXTENSIONS
a(11)-a(13) from Andrew Howroyd, Nov 02 2023
STATUS
approved